Wikipathways Analysis Essay

1. Tukey J. W. Exploratory data analysis. Reading, MA: Addison-Wesley; 1977. 688

2. Tukey J. W. We need both exploratory and confirmatory. Am Stat. 1980;34:4.

3. Pathguide. Available: http://www.pathguide.org. Accessed 29 July 2010.

4. BioPAX. Available: http://www.biopax.org. Accessed 29 July 2010.

5. Saraiya P, North C, Duca K. Visualizing biological pathways: requirements analysis, systems evaluation and research agenda. Inf Vis. 2005;4:15.

6. Gehlenborg N, O'Donoghue S. I, Baliga N. S, Goesmann A, Hibbs M. A, et al. Visualization of omics data for systems biology. Nat Methods. 2010;7:S56–68.[PubMed]

7. DeRisi J. L, Iyer V. R, Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997;278:680–686.[PubMed]

8. Bensellam M, Van Lommel L, Overbergh L, Schuit F. C, Jonas J. C. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia. 2009;52:463–476.[PubMed]

9. Huang da W, Sherman B. T, Lempicki R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.[PMC free article][PubMed]

10. Slonim D. K, Yanai I. Getting started in gene expression microarray analysis. PLoS Comput Biol. 2009;5:e1000543. doi: 10.1371/journal.pcbi.1000543. [PMC free article][PubMed]

11. Tarca A. L, Draghici S, Khatri P, Hassan S. S, Mittal P, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25:75–82.[PMC free article][PubMed]

12. Penders B. H. K, Vos R. Walking the Line between Lab and Computation: The “Moist” Zone. BioScience. 2008;58

13. Sartor M. A, Leikauf G. D, Medvedovic M. LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics. 2009;25:211–217.[PMC free article][PubMed]

14. Luo W, Friedman M. S, Shedden K, Hankenson K. D, Woolf P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 2009;10:161.[PMC free article][PubMed]

15. Bussemaker H. J, Ward L. D, Boorsma A. Dissecting complex transcriptional responses using pathway-level scores based on prior information. BMC Bioinformatics. 2007;8(Suppl 6):S6.[PMC free article][PubMed]

16. Gold D. L, Miecznikowski J. C, Liu S. Error control variability in pathway-based microarray analysis. Bioinformatics. 2009;25:2216–2221.[PMC free article][PubMed]

17. Jensen L. J, Kuhn M, Stark M, Chaffron S, Creevey C, et al. STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–416.[PMC free article][PubMed]

18. Vastrik I, D'Eustachio P, Schmidt E, Gopinath G, Croft D, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.[PMC free article][PubMed]

19. Hu Z, Mellor J, Wu J, Kanehisa M, Stuart J. M, et al. Towards zoomable multidimensional maps of the cell. Nat Biotechnol. 2007;25:547–554.[PubMed]

20. van Iersel M. P, Pico A. R, Kelder T, Gao J, Ho I, et al. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics. 2010;11:5.[PMC free article][PubMed]

21. Pathway Commons. Available: http://www.pathwaycommons.org. Accessed 29 July 2010.

22. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 2009;37:D619–622.[PMC free article][PubMed]

23. Kelder T, Pico A. R, Hanspers K, van Iersel M. P, Evelo C, et al. Mining biological pathways using WikiPathways web services. PLoS One. 2009;4:e6447. doi: 10.1371/journal.pone.0006447. [PMC free article][PubMed]

24. Kawashima S, Katayama T, Sato Y, Kanehisa M. KEGG API: A Web Service Using SOAP/WSDL to Access the KEGG System. Genome Informatics. 2003;14:673–674.

25. Paxtools. Available: http://www.biopax.org/paxtools. Accessed 29 July 2010.

26. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.[PMC free article][PubMed]

27. Krieger C. J, Zhang P, Mueller L. A, Wang A, Paley S, et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 2004;32:D438–442.[PMC free article][PubMed]

28. Pico A. R, Kelder T, van Iersel M. P, Hanspers K, Conklin B. R, et al. WikiPathways: pathway editing for the people. PLoS Biol. 2008;6:e184. doi: 10.1371/journal.pbio.0060184. [PMC free article][PubMed]

29. Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, et al. The Systems Biology Graphical Notation. Nat Biotechnol. 2009;27:735–741.[PubMed]

30. Edgar R, Domrachev M, Lash A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210.[PMC free article][PubMed]

31. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, et al. ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31:68–71.[PMC free article][PubMed]

32. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M. R, et al. Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 2006;34:W729–732.[PMC free article][PubMed]

33. Noy N. F, Shah N. H, Whetzel P. L, Dai B, Dorf M, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009;37:W170–173.[PMC free article][PubMed]

34. Kapushesky M, Emam I, Holloway E, Kurnosov P, Zorin A, et al. Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res. 38:D690–698.[PMC free article][PubMed]

35. Sage Commons. Available: http://www.sagebase.org/COMMONS/Mission.html. Accessed 29 July 2010.

36. Werner T. Bioinformatics applications for pathway analysis of microarray data. Curr Opin Biotechnol. 2008;19:50–54.[PubMed]

37. Wheelock C. E, Wheelock A. M, Kawashima S, Diez D, Kanehisa M, et al. Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol Biosyst. 2009;5:588–602.[PubMed]

RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites
Bofei Zhang 1,2,, Senyang Hu 1,, Elizabeth Baskin 1,, Andrew Patt 1,3, Jalal K. Siddiqui 1 and Ewy A. Mathé 1,*
Received: 21 December 2017 / Accepted: 16 February 2018 / Published: 22 February 2018

Abstract

:
The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly.
pathway analysis; metabolomics; transcriptomics; pathway database

One thought on “Wikipathways Analysis Essay

Leave a Reply

Your email address will not be published. Required fields are marked *